Influence of cationic molecules on the hairpin to duplex equilibria of self-complementary DNA and RNA oligonucleotides

نویسندگان

  • Shu-ichi Nakano
  • Toshimasa Kirihata
  • Satoshi Fujii
  • Hiroshi Sakai
  • Masayasu Kuwahara
  • Hiroaki Sawai
  • Naoki Sugimoto
چکیده

A self-complementary nucleotide sequence can form both a unimolecular hairpin and a bimolecular duplex. In this study, the secondary structures of the self-complementary DNA and RNA oligonucleotides with different sequences and lengths were investigated under various solution conditions by gel electrophoresis, circular dichroism (CD) and electron paramagnetic resonance (EPR) spectroscopy and a ultraviolet (UV) melting analysis. The DNA sequences tended to adopt a hairpin conformation at low cation concentrations, but a bimolecular duplex was preferentially formed at an elevated cationic strength. On the other hand, fully matched RNA sequences adopted a bimolecular duplex regardless of the cation concentration. The thermal melting experiments indicated a greater change in the melting temperature of the bimolecular duplexes (by approximately 20 degrees C) than that of the hairpin (by approximately 10 degrees C) by increasing the NaCl concentration from 10 mM to 1 M. Hairpin formations were also observed for the palindrome DNA sequences derived from Escherichia coli, but association of the complementary palindrome sequences was observed when spermine, one of the major cationic molecules in a cell, existed at the physiological concentration. The results indicate the role of cations for shifting the structural equilibrium toward a nucleotide assembly and implicate nucleotide structures in cells.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Recognition of RNA duplexes by chemically modified triplex-forming oligonucleotides

Triplex is emerging as an important RNA tertiary structure motif, in which consecutive non-canonical base pairs form between a duplex and a third strand. RNA duplex region is also often functionally important site for protein binding. Thus, triplex-forming oligonucleotides (TFOs) may be developed to regulate various biological functions involving RNA, such as viral ribosomal frameshifting and r...

متن کامل

Oligonucleotides with novel, cationic backbone substituents: aminoethylphosphonates.

Oligonucleotide (2-aminoethyl)phosphonates in which the backbone consisted of isomerically pure, alternating (2-aminoethyl)-phosphonate and phosphodiester linkages have been prepared and characterized. One of these single isomer oligonucleotides (Rp) formed a more stable duplex with DNA or RNA than its corresponding natural counterpart. Hybrid stability was more pH-dependent, but less salt-depe...

متن کامل

Condensation of oligonucleotides assembled into nicked and gapped duplexes: potential structures for oligonucleotide delivery

The condensation of nucleic acids into well-defined particles is an integral part of several approaches to artificial cellular delivery. Improvements in the efficiency of nucleic acid delivery in vivo are important for the development of DNA- and RNA-based therapeutics. Presently, most efforts to improve the condensation and delivery of nucleic acids have focused on the synthesis of novel conde...

متن کامل

Pyrene is highly emissive when attached to the RNA duplex but not to the DNA duplex: the structural basis of this difference

Through binding and fluorescence studies of oligonucleotides covalently attached to a pyrene group via one carbon linker at the sugar residue, we previously found that pyrene-modified RNA oligonucleotides do not emit well in the single-stranded form, yet the attached pyrene emits with a significantly high quantum yield upon binding to a complementary RNA strand. In sharp contrast, similarly mod...

متن کامل

Transition characteristics and thermodynamic analysis of DNA duplex formation: a quantitative consideration for the extent of duplex association.

Transition characteristics and thermodynamic properties of the single-stranded self-transition and the double-stranded association were investigated and analyzed for 9-, 15- and 21-bp non-self-complementary DNA sequences. The multiple transition processes for the single-stranded self-transition and the double-stranded association were further put forth. The experimental results confirmed that t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 35  شماره 

صفحات  -

تاریخ انتشار 2007